This article was downloaded by:
On: 25 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Macromolecular Science, Part A
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title content=t713597274

A Fortran II Computer Program for Calculation of ConcentrationDependent Sedimentation Coefficients
J. Ehrlich ${ }^{\text {a }}$; P. Weiner ${ }^{\text {a }}$; S. S. Stivala ${ }^{a}$
a DEPARTMENT OF CHEMISTRY AND CHEMICAL ENGINEERING, STEVENS INSTITUTE OF TECHNOLOGY, HOBOKEN, NEW JERSEY

To cite this Article Ehrlich, J. , Weiner, P. and Stivala, S. S.(1967) 'A Fortran II Computer Program for Calculation of Concentration-Dependent Sedimentation Coefficients', Journal of Macromolecular Science, Part A, 1: 6, 1127-1141
To link to this Article: DOI: 10.1080/10601326708053762
URL: http://dx.doi.org/10.1080/10601326708053762

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

A Fortran II Computer Program for Calculation of Concentration-Dependent Sedimentation Coefficients*

J. EHRLICH, P. WEINER, and S. S. STIVALA DEPARTMENT OF CIIEMISTRY AND CHEMICAL ENGINEERING STEVENS INSTITUTE OF TECHNOLOGY HOBOKEN, NEW JERSEY

Summary

Abstract

A computer program for calculation of concentration-dependent sedimentation coefficients is presented. Provision is made for rejection of outlying experimental points. The method yields extremely rapid and precise results from original data without any intermediate steps.

Use of a computer program for calculation of concentration-dependent sedimentation constants assures a more rapid, precise, and sophisticated method. Excellent treatments of Fortran programming are given by Organick (1), Germain (2), and Stein and Munro (3). A general review of computation methods of ultracentrifugation was presented by Trautman (4) and processing of analytical ultracentrifugal data was given by Chun and Gehrke (5). In this discussion will be presented a detailed treatment of a complete Fortran program that can be utilized to get these sedimentation constants direct from the initial data without any intervening steps such as graph plotting or calculations. Rejection of outlying results is also a built-in feature. If desired, modification of the program will also allow for second moment calculations.

The sedimentation constant (or coefficient) is defined by the following differential equation:

$$
S=\frac{1}{\omega^{2} r} \frac{d r}{d t}=\frac{1}{\omega^{2}} \frac{d \ln r}{d t}
$$

- This work was supported in part by U.S. Public Health Service Grant HE-05943 and Public Health Service Fellowship 5-F2-HE-29,038-02.

DIMENSION $x(6)$, AVERL $(6,6), T(6)$, SLOPE (6), CONC (6)
DIMENSION SD(6),REUA(6),K(6), SLAPE (6),CA(6)
DIMENSION A(6),C(6),CALCY(6,6),DIF(6,6)
DIMENSION VEHA(6), DIFF(6),DIFS(6.6)
DIMENSION NSAVE (6),MAO(6)
DIMENSION COLCY(6.6):DAF (6.6).DAFS (6.6)
DIMENSION SO(6), CULCY(6), DOF (6), DOFS(6)
13 READ $1,(4(1), 1=1,6)$
PUNCH 1. (A (1), $1=1,6$)
READ 2.NCONC
DO $600 \mathrm{M}=1$. NCONC
READ 2.NT
NSAVE (M) =NT
MAENSAVE (M)
DO $400 \mathrm{~J}=1$ I.MA
READ 2.NX
READ 3, (X(l), $1=1, N X)$
AVER=0.
DO $300 \quad \mathrm{I}=1$. NX
$30 \cup$ AVER=AVER + X (1)
EX $=N X$
$40 \cup$ AVERL (M.J) x LOG ((AVER*0.48449/EX) +5.72)/2.3026
READ 3.(T) 1). $1=1$,NT)
SUMX $=0$.
SUMY $=0$.
SUMXY $=0$ 。
SUMXX=U.
DO 500 L=1.MA
SUMX $=$ SUMX $+T$ (L)
SUMY $=$ SUMY + AVERL (M.L)
SUMXX=SUMXX+T(L)**2
500 SUMXY $=$ SUMXY+AVERL (M,L)*T(L)
$G=M A$
DENOM $=$ SUMX**2-G*SUMXX
SLOPE $(M)=\{$ SUMX*SUMY-G*SUMXY)/VENOM
$C(M)=(S U M X * S U M X Y-S U M Y * S U M X X) / D E N O M$
DO 501 IM=1.MA
CALCY(M.IM) $=$ SLOPE $(M) * T(I M)+C(M)$
DIF(M.IM) $=4 \forall S(C A L C Y(M+I M)-A V E R L(M . I M))$
501 DIFS(M,IM)=DIF(M,IM)**2
$\mathrm{SOS}=0$.
$00502 \quad 1 \mathrm{~N}=1 . \mathrm{MA}$
らU2 SUS=SDS+DIFS(M,IN)
$R=M A$
$S D(M)=(S D S /(R-1)) * * *$,
$\operatorname{DIFF}(M)=\operatorname{DIF}(M, 1)$
$K(M)=1$
DO 503 1P=2.MA
REBA $(M)=D I F F(M)-D I F(M, I P)$
IF(REBA (M))504.504.503
504 DIFF $(M)=D: F(M, 1 P)$
$K(M)=I P$
SO3 CONTINUE
$\operatorname{VEBA}(M)=D 1 F F(M)-1.5 * S D(M)$
IF(VEBA(M)I505.5U5.506
sus
$\operatorname{MAU}(M)=1$
GO TO 510
5C6 ME=K (M)

FIG. 1.

```
    PUNCH 4.M.T(MES),AVERL(M,MB)
    SAMX=0.
    SAMY =0.
    SAMXX=O.
    SAMXY=0.
    DO 509 10=1.MA
    IF(K(M)-10)5UG.50Y.bOB
SUE SAMX = SAMX+T(1O)
    SAMY =SAMY + AVERL{M,1O;
    SAMXX=SAMXX+T(|Q)**2
    SAMXY=SAMXY+Y(1O)*AVERL (M , IO)
509 CONTINUE
    F=MA-1
    DENAM=SAMX**2-F*SAMXX
    SLAPE(M) = (SAMX*SAMY-F*SAMXY)/OUNAM
    CA(M) = (SAMX*SAMXY-SAMY*SAMXX)/DENAM
    DO 7OO JA=1,MA
    COLCY(M,JA)= SLムPE (M)*T(Jム) +CA(M)
    DAF(M:JA)#ADS(COLCY(M*JA)-AVLRL(M;JA))
700 DAFS(M,JA)=DAF(M,JA)**2
    SOS=0.
    DO 702 JB=1.MA
    1F(K(M)-JB)701.702.701
701 SOS=SOS+DAFS(M.Jt)
702 CONTINUE
    RA=MA-2
    SO(M)=(SOS/RA)***5
    MOO=2
    M&O(M)=2
    PUNCH S.SLAPt(M),CM(M)
S10 PUNCH 6,M,SLUPE (M),C(M)
    1F(MOO-2)512.511.511
S11 SLOPE (M)=SLAPE (M)
    C(M)=CA(M)
512 CONTINUE
600 SLOPE (M)=1./(SLOPE(M)*9.7943E-1U)
    OO 601 J=1.NCONC
    PUNCH 7.J.SD(J)
    IF(MAO(`)-2;7U3.7U4.703
704 PUNCH 18.J.SU(N)
703 PUNCH B
    MC=NSAVE(J)
    OO 601 1=1.MC
    PUNCHII.T(1).AVERL{J,1),CALCY(J.1).DIF(J.I)
GUI CONTINUE
    READ 3.(CONC(1).1=1.NCONC)
    SMX=0.
    SMY=0.
    SMXY=0.
    SMXX=0.
    00 610 L日=1.NCONC
    SMX=SMX+CONC(LO)
    SMY=SMY+SLOPL(LG)
    SMXX=SMXX+CONC(LU)**2
61U SMXY=SMXY+CONC(LD)*SLUPE(LU)
    H=NCONC
    DENM=SMX**2-H*SMXX
    SLOPF =(SMX*SMY-H*SMXY)/DENMM
    CU={SMX*SMXY-SMY*SNXX)/DENM
```

FIG．1．（continued）．

```
    DO 611 LC=1.NCONC
    CALCY(LC.LC)=SLOPF #CONC (LC) +CU
    UIF(LC.LC)=ADS(CMLCY(LC,LC)=OLUPE(LC))
6!! 0IFS(LC.LC!*DIF:&C.LC)**2
    SUUxU.
    DO 612 LD=1.NCONC
612 SUD=SOD+DIFS(LU'LU(J
    R=NCONC
    SD(1)=(SOD/(R-1*))**65
    DIFF(1)=DIF(1.1)
    KA=1
    DO 614 LE=2.NCONC
    REBA(LE)=DIFF(1)-DIF(LE *LE)
    IF(REGA(LE)I613.613.614
613 UIFF(1)=UIF(LE.LE)
    KA=LE
614 CONTINUE
    VEHA(1)=0[FF(1)-1.3*SD(1)
    JF(VEBA(1):615.615.616
615 MOO=1
    MAD=!
    GOTO 620
616 PUNCH 9.CONC(KA).SLOPE(Kん)
    SIMX=0.
    SIMY=0.
    SIMXX=U.
    SIMXY=U.
    DO 618 LG=1.NCONC
    IF(KA-LG)617.618.617
617 SIMX=SIMX+CONC(LG)
    SIMY=SIMY+SLOPE(LG)
    SIMXY=SIMXY+CONC(LG)*SLCl E(LG)
    SIMXX=SIMXX+CONC(LG)**2
G18 CONTINUE
    Z=NCONC-1
    DENIM=SIMX** 2-Z*SIMxX
    BOOB=(SIMX*SIMXY- SIMY*SIMXXI/OENIM
    t=1./bOU口
    SLOM=(SIMX*SIMY-2*SIMXY)/ADENIM
    DO 750 JC=1.NCONC
    CULCY(JC)=SLUM*CONC(J) +8UOB
    DOF(JC)=ABS(CLLCY(JC)-SLONE(JC))
75U UOFS(JC)=DOF(ひC)**2
    SAS=C.
    DO 762 JD=1.NCONC
    IF(KA-J0)761.762.761
761 SAS=SAS+DOFS(JU)
762 CONTINUE
    RO=NCONC-2
    SA=(SHS/RO)**.S
    MAD=2
    MOO=2
G<U N=1./CO
    PUNCH 12
    NO 630 LZ=1.NCONC
63U PUNCH 1S.CONC(LZ),SLOPE(LZ).CMLCY(LZ.LZ).DIF(LZ.LZ)
    PUNCH 14.SD(1)
    IF(MAD-2)770.771.770
771 PUNCH 19.SA
```

FIG．1．（continued）．

```
70 CONTINUE
    PUNCH IU.D
    IF(MOU-Z)8Ul,8UU&bUI
BUU PUNCH 16.E
8UI CONTINUL
    PUNCH 17
    FORMAT(IUA4)
    FORMAT(l15)
    FORMAT(7FIU.2)
    FORMAT(5HCONC. +12.1OHREJ. PT T=.FIO.6.2X.6HAVERL=.F10.6)
    FORMAT(1GHCORRECTED SLOPE =.tट0.6.5X.1OHINTERCEPT=.ERO.6)
    FORMAT(EHIN CONC., 12.6HSLUPL =, t2O.6.5X.1OHINTERCEPT=.EZU.6)
    FORMAT(/BHIN CONC..12.16HTME STAND. DEV. = FF10.6)
    FORMAT\12H T AVERL .12H CEH CALCY.
    112H OIF ,
    FORMATI//8HIN CONC..E15.6.2x.14HREJ. 1/S APP.=.t15.6)
    FORMAT(//27HTHE SEDIMENTATIUN CONSTANT=,EZO.6)
    FORMAT (4F12.6)
    FORMAT(//15H CONC 1/13H 1/5 APD.
    114H CALC 1/S APP.5X 4H DIF)
14 FORMAT(¿GHTHE STAND. DEV. OF 1/S APP*=,E\2.6)
15 FORMAT(4E14.6)
16 FORMATI22HCORRLCTED SEU. CONST.=,E12.6)
17 FORMAT (GHADCDEFGHI)
1% FORMAT(GHIN CONC. 12.1BHCORR. STMNU. DEV. =.F10.6
19 FORMAT (JUHSTANO. DEV. OF CORK. I/S APP. =, E<U.U)
2U FURMAT(FS.C)
    GO TO 13
    END
```

FIG. 1. Program.

Program notes

1. It is possible for an investigator if he so desires to raise or lower the standard deviation factor in statements $503+001$, and $614+001$.
2. In statement 400 , the magnification factor, 0.48449 , can be changed to fit the ultracentrifuge in use.
3. In statement 600 , the factor 9.7943×10^{-10} can be altered if the speed of the rotor is changed.

Definition of input symbols

NCONC $=$ number of concentrations
$\mathrm{T}=$ the time at a particular interval
$N T=$ number of times
$x=$ value of micrometer reading from reference line to the maximum ordinate
$\mathrm{NX}=$ number of x values

Summary of arrangement of input data cards

1. Title of experiment (columns 1-24)
2. Number of concentrations (fifth column)
3. Number of times for first concentration (fifth column)
4. Number of x values at first time and first concentration (fifth column)
5. x values at first time and first concentration

Continued at bottom of $p .1133$

FIG. 2.

2.0987	2.0977	2.0972			
3					
2.1520	2.1500	2.1535			
0.	8.	16.	24.	32.	
5					
3					
1.9895	1.9915	1.9915			
3					
2.0520	2.0530	2.0528			
2					
2.1080	2.1080				
${ }^{3}$					
2.1653	2.1637	2.1633			
3					
2.2299	2.2324	2.2312			
0.	8.	16.	24.	32.	
1.000000	. 750000	. 666667	. 500000	. 333333	. 25000000

FIG. 2. Example of input data.
where $r=$ distance of boundary from center of rotation, $\omega=$ angular velocity in radians per second, and $t=$ time in seconds.
Therefore, if $\ln r$ is plotted versus time, the slope divided by ω^{2} gives the sedimentation constant directly. Also, if desired, this can be corrected to the standard state by multiplying by a correction factor (6).

If the polymer is pure and has a narrow molecular weight dis-

1	11	20	21	30	31	40	41	50			

Number of x values at second time and first concentration

| col. 1 | 10 | $\overline{11}$ | 20 | 21 | 30 | $\overline{31}$ | 40 | 41 | 50 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Do same for all x values of first concentration
6. Time values at first concentration

col. 1	10	$\overline{11}$	20	21	30	31	40	41	50

Repeat cards 3-6 for all concentrations
7. Concentration values

col, $\overline{1}$	10	$\overline{11}$	20	$\overline{21}$	30	$\overline{31}$	40	41	50	
51	60									

Notes

1. If a particular time is omitted, this fact must be accounted for in card 3 and its value omitted in the proper order in card 6.
2. If a particular concentration is omitted, this fact must be accounted for in card 2 and its value omitted in the proper order in card.
3. Cards must be checked and rechecked for proper content and order.

FIG. 3.

FIG. 3. Example of calculation.

Notes for calculation

1. Abbreviations:
a. $\mathrm{REJ} . \mathrm{PT}=$ rejected point
b. CORR. STAND. DEV. = standard deviation of new line after rejection of outlying point
c. REJ. 1/S APP. $=$ rejected $1 / S_{\text {apparent }}$
d. STAND. DEV. OF CORR. I/S APP. = standard deviation of new line after rejection of outlying $1 / s_{\text {apparent }}$
e. CORRECTED SED. CONST. $=$ corrected sedimentation constant after rejection of outlying $1 / s_{\text {apparent }}$
f. $\mathbf{C A L C Y}=$ calculated $A V E R L$
2. Since the intermediary as well as final results are printed out, it is possible for the investigator to spot check calculations if he so desires by plotting his own curves and reject his own outlying points and compare.
3. By comparing the corrected and uncorrected standard deviations one can see whether there is justification in rejecting an outlying point.
4. In difference columm, computer truncates in print-out last digit rather than rounding it off.
5. The sedimentation constant reported should be rounded off to three significant figures.
tribution, the schlieren pattern obtained will be closely symmetrical and it will be possible to determine the maximum ordinate by bisecting the schlieren fringes without resorting to second moment calculations.

FLOW CHART

Notes for Flow Chart

1. $x=$ micrometer reading on comparator of distance from outer edge of inner reference hole to boundary
2. $\operatorname{AVERL}=$ natural logarithm$/ 2.303$ (average of X value at a particular time and conc. \times magnification factor ${ }^{*}+$ distance from outer edge of inner reference hole to center of rotation \uparrow)
3. $\frac{1}{\mathrm{~S}_{\text {app. }}}=\frac{60\left(\omega^{2}\right)}{2.303(d \ln x / d x)}$
$=\frac{(2 \pi \times \text { speed of rotor in } \mathrm{rpm} t / 60)^{2}}{\text { slope } \times 2.303 / 60}=\frac{1}{\text { slope }\left(9.7943 \times 10^{-10}\right)}$

EXPERIMENTAL

Materials

Commercial heparin sodium, derived from beef lungs, was obtained from Organon, Inc. Heparin is a charged polysaccharide. For use, 2% solutions of heparin in 0.5 M NaCl solution were dialyzed for 48 hr with constant magnetic stirring and under refrigeration against 0.5 M NaCl solution.

* Magnification factor of our ultracentrifuge is 0.48449 .
\dagger This distance is 5.72 cm , taking into consideration the stretching of the rotor.
\ddagger Speed used is $59,780 \mathrm{rpm}$.

Methods

All sedimentation velocity runs were made using the BeckmanSpinco Model E analytical ultracentrifuge. The An-D rotor was used with the R.T.I.C. system set at $20^{\circ} \mathrm{C}$ with a speed of 59,780 rpm. Single-sector capillary-type synthetic boundary cells with Epon centerpieces were filled with 0.25 ml of solute and about 0.2 ml of solvent in the reservoir. Precision volume measurements were made with Hamilton microliter syringes equipped with Chaney adaptors. The dialysate was used as solvent for all dilutions. Photographs were taken at 8-min intervals on Kodak II-G spectroscopic plates. Cells were checked for leakage in each run.

Computer used was the IBM $1620-(1)$ with 40 K memory, equipped with Fortran or Kingston Fortran compiler. Calculations were checked by plotting and calculator.

DISCUSSION OF PROGRAM

Two to five readings are made on a photographic plate from the reference line obtained from the inner reference hole of the counterbalance to a line bisecting the schlieren fringes. An average of these readings is calculated, multiplied by the magnification factor of the ultracentrifuge, and added to the distance of reference line from the center of rotation. This is done at each particular time interval. The logarithms of these values are plotted versus the particular times, from which the slopes, intercepts, and equation of the lines are obtained. If there is an outlying point in any concentration, it is rejected by using a modification of the 2.5 -D rule (7). Because of the precision of the ultracentrifuge it was found experimentally that a point should be rejected if the absolute difference between its calculated and actual value is greater than 1.5 times the standard deviations of the line. If a point has been rejected, the line is replotted omitting this point and a new slope, intercept, and standard deviation obtained. The above procedure is repeated for all the concentrations and the apparent sedimentation constants are calculated from the slopes. Then the reciprocals of the apparent sedimentation constants are plotted versus concentrations. Again an outlying point will be rejected, but this time if the absolute difference between the calculated and actual value is greater than 1.3 times the standard deviation of the line. This result was arrived at by repeated runs. If a point is rejected, the line is
replotted omitting this point and a new slope, intercept, and standard deviation obtained. Through extrapolation to zero concentration, the sedimentation constant is found both for the case where a point is rejected and where none is rejected. At least five concentrations should be used for this determination. (See Figs. 1 to 3.$)$

CONCLUSIONS

Concentration-dependent sedimentation constants can be calculated on a computer. A program in Fortran which can be compiled either in Fortran or Kingston Fortran was presented. Results are obtained quickly and efficiently from initial data without intermediate plotting and calculation. Also a built-in mechanism is supplied for eliminating outlying data. The program can be easily modified to allow for second moment calculations and for use with the IBM 360 computer.

Acknowledgments

The authors acknowledge with pleasure the criticisms and suggestions of Mr. George Denzer. We wish to express our appreciation to the Stevens Institute of Technology computer center for permitting us to use their facilities and for their helpful assistance. The authors are grateful to Organon, Inc., for supplying the generous sample of heparin sodium.

REFERENCES

1. E. J. Organick, A Fortran Primer, Addison-Wesley, Reading, Mass., 1966.
2. C. B. Germain, Programming the IBM 1620, Prentice-Hall, Englewood Cliffs, N.J., 1965.
3. M. L. Stein and W. D. Munro, A Fortran Introduction to Programming and Computers, Academic Press, New York, 1966.
4. R. Trautman, in Ultracentrifugal Analysis in Theory and Experiment (J. W. Williams, ed.), Academic Press, New York, 1963, p. 203.
5. P. Chun and C. W. Gehrke, Anal. Biochem., 17, 214 (1966).
6. H. K. Schachman, in Methods in Enzymology, Vol. IV (S. P. Colowick and N. O. Kaplan, eds.) Academic Press, New York, 1957, p. 32.
7. D. A. Skoog and D. M. West, in Fundamentals of Analytical Chemistry, Holt, New York, 1963, p. 58.

Zusammenfassung

Eine Rechenprogram zur Berechnung von konzentrationsabhängigen Sedimentationkoefiizienten wird angegeben. Ausserbalb liegende experimentelle Daten werden hierbei eliminiert. Die Methode ergibt rasche und genaue Ergebnisse direkt aus den ursprünglichen Daten ohne Zwischenstufen.

Résumé

On présente un programme d'ordinateur pour calculer les coëfficients de sédimentation, dépendant de la concentration. On fait des arrangements pour rejetter les points expérimentaux à l'écart. La méthode donne des résultats extrêmement rapides et précises à partir des données originales sans procedés intermédiaires.

Received by editor April 11, 1967
Submitted for publication August 22, 1967

